An Empirical Study on Optimal Reinsurance about crop insurance in China
—–Based on data from Inner Mongolia, Jilin and Liaoning

Yunbo Wang
AnHua Agricultural Insurance Company, Beijing, China.
Outline

• Motivation
• Model and data
• Results
• Conclusion
Motivation

• Agricultural Insurance
 – Adverse weather, flood, draught, hail etc.
 – Diseases of livestock.
 – Resembles catastrophe insurance.
 – Reinsurance is a major risk transfer instrument.

• Agricultural Insurance in China
 – The world's second-largest agricultural insurance market.
 – Crop insurance accounts for over 90%.
Motivation

• Reinsurance of crop insurance during 2008-2012
 – Cumulated original premiums: 62.68 billion RMB
 – Cumulated ceded premiums: 9.50 billion RMB.
 – Cumulated losses recovered from reinsurers: 4.57 billion RMB.
 – Cumulated expenses recovered from reinsurers: 2.33 billion RMB.
 – Cumulated net ceded profit: 2.13 billion RMB.
 – Ceded profit accounts for 3.4% of original premiums.
 – Ceded profit accounts for 22.42% of ceded premiums.
Motivation

• Considering the high cost of reinsurance for crop insurance:
 – How to determine the optimal reinsurance arrangement?
 – And what is the appropriate cost for it?
Model and data

Empirical model:

\[
\begin{align*}
\min_f & \quad \rho(x, f) \\
\text{s.t.} & \quad 0 \leq f_i \leq x_i \\
& \quad \pi(f) \leq \pi
\end{align*}
\]

- \(x = (x_1, x_2, \ldots, x_n) \), n-dimension samples, can be collected directly, or generated randomly.
- for loss \(x_i \), the insurer cedes \(f_i \) to a reinsurer.

- Empirical models can be transformed into Second Order Conic Programming problems (Weng, 2009)
- CVX MATLAB toolbox (Grant et al., 2013) can be used to solve this problem
Model and data

• Advantages of empirical model (Weng, 2009)
 – Simple, intuitive, practical.
 – It exploits directly the observed data.
 – Applies to a number of premium principles.

• Premium principles
 – Expectation principle: safety loading is unrelated to the variation of the risk:
 \[\pi(f) = (1 + \beta)E[f(X)] \]
 – Standard deviation principle: safety loading is positively related to the variation of the risk:
 \[\pi(f) = E[f(X)] + \beta \sqrt{Var[f(X)]} \]
Model and data

• Risk measures

 – $VaR_X(\alpha) = \inf \{x: \Pr(X > x) \leq \alpha\}$

 – $CTE_X(\alpha) = E[X|X > VaR_X(\alpha)]$

 – CTE is a better risk measure compared to VaR (Cai et al., 2008).

• In this study

 – To minimize the risk measure under the reinsurance premium budget constraint.
Model and data

- Other assumptions
 - Risk tolerance level α: 2%, 5%, 10%, 20%.
 - Reinsurance premiums budget π: 3%, 3.75%, 4%, 5% of total premiums.
 - Safety loading coefficient β: 20%, 30%, 40%, 50%.
 - Samples size: 1000.
Model and data

• Loss ratio distribution (AHCRES)
 – Inner Mongolia: Gamma Distribution, \(a = 5.74987 \) and \(b = 0.105108 \).
 – Liaoning: Gamma Distribution, \(a = 4.1405 \) and \(b = 0.1796 \).
 – Jilin: Generalized Extreme Value Distribution, \(a = 0.105086 \), \(b = 0.173391 \) and \(c = 0.53431 \).

– Gamma Distribution: \(f(x) = \frac{1}{b^a \Gamma(a)} x^{a-1} e^{-\frac{x}{b}} \)

– Generalized Extreme Value Distribution:
 \[
 f(x) = \left(\frac{1}{b}\right) \exp \left(- \left(1 + a\frac{(x-c)}{b} \right)^{-\frac{1}{a}} \right) \left(1 + a\frac{(x-c)}{b} \right)^{-1-\frac{1}{a}}
 \]
Results - Inner Mongolia

Fixed α, varied π and β — scatter plots of $\{(x_i, f_i)\}$

- When π is small, limited stop loss or its variants are optimal, with the increase of π, the optimal form may become stop loss without a limit.
- With the increase of β, the optimal form may become limited stop loss from stop loss.
- Small π and large β play similar roles in the process of optimal reinsurance design.
- The reality is, fairly large β and small π (strict reinsurance premiums budget).
Robustness test- Inner Mongolia

- For \(\{(x_i, f_i)\} \), fit \(f(x) = \min\{c(x - d)_+, m\} \), we replicate the random samples 500 times independently to obtain 500 independent estimates of \(\hat{c} \) and \(\hat{d} \) using \(\varepsilon = 0.001 \).

- For one simulation, if \(|f(x_i) - f_i| \leq \varepsilon \) for \(i = 1, 2, ..., 1000 \), one admission is obtained, admissibility=times of admission/500.

<table>
<thead>
<tr>
<th>(\beta = 0.3), samples size=1000, (\varepsilon = 0.001)</th>
<th>(\alpha)</th>
<th>(\pi)</th>
<th>admissibility</th>
<th>(\bar{c})</th>
<th>(\bar{d})</th>
<th>(\bar{d} + m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>3.00%</td>
<td>100.00%</td>
<td>1.00</td>
<td>88.69%</td>
<td>107.81%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.75%</td>
<td>100.00%</td>
<td>1.00</td>
<td>85.03%</td>
<td>107.54%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.00%</td>
<td>100.00%</td>
<td>1.00</td>
<td>84.16%</td>
<td>107.93%</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>3.00%</td>
<td>100.00%</td>
<td>1.00</td>
<td>81.67%</td>
<td>94.42%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.75%</td>
<td>100.00%</td>
<td>1.00</td>
<td>79.41%</td>
<td>94.94%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.00%</td>
<td>100.00%</td>
<td>1.00</td>
<td>78.80%</td>
<td>95.28%</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td>3.00%</td>
<td>100.00%</td>
<td>1.00</td>
<td>72.14%</td>
<td>80.42%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.75%</td>
<td>100.00%</td>
<td>1.00</td>
<td>70.11%</td>
<td>80.10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.00%</td>
<td>100.00%</td>
<td>1.00</td>
<td>69.80%</td>
<td>80.49%</td>
<td></td>
</tr>
</tbody>
</table>
Results - Inner Mongolia

Optimal reinsurance arrangement of Inner Mongolia under different constraints

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\beta)</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\pi)</td>
<td>30%</td>
<td>40%</td>
<td>50%</td>
<td>30%</td>
</tr>
<tr>
<td>5%</td>
<td>3.00%</td>
<td>89%</td>
<td>108%</td>
<td>91%</td>
<td>108%</td>
</tr>
<tr>
<td></td>
<td>3.75%</td>
<td>85%</td>
<td>108%</td>
<td>88%</td>
<td>109%</td>
</tr>
<tr>
<td></td>
<td>4.00%</td>
<td>84%</td>
<td>108%</td>
<td>87%</td>
<td>109%</td>
</tr>
<tr>
<td>10%</td>
<td>3.00%</td>
<td>82%</td>
<td>94%</td>
<td>83%</td>
<td>94%</td>
</tr>
<tr>
<td></td>
<td>3.75%</td>
<td>79%</td>
<td>95%</td>
<td>81%</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>4.00%</td>
<td>79%</td>
<td>95%</td>
<td>80%</td>
<td>95%</td>
</tr>
<tr>
<td>20%</td>
<td>3.00%</td>
<td>72%</td>
<td>80%</td>
<td>73%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>3.75%</td>
<td>70%</td>
<td>80%</td>
<td>71%</td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td>4.00%</td>
<td>70%</td>
<td>80%</td>
<td>71%</td>
<td>81%</td>
</tr>
</tbody>
</table>
Conclusion

• When the primary insurer’s loss function, the reinsurance premium calculation principle, risk measure ρ are given, α, β, π all affect the optimal reinsurance design.

• When strict constraint on reinsurance premiums budget π are implemented (which is often the reality), Limited Stop Loss Reinsurance is optimal.

• Reinsurance premium calculation principle and safety loading coefficient of reinsurers play important roles in the optimal reinsurance decision-making process.
Thank you for your attention